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Abstract- Matrix multiplication is widely used as core 

operation in various signals processing application like 

software defined radio. The FFT processor is widely used 

in DSP and communication applications. Recently, both 

high data processing and high power efficiency consumes 

more power. Due to the nature of non-stop processing at 

the sample rate, the pipelined FFT appears to be the 

leading architecture for high performance applications. 

Since these two functions are widely used in various mobile 

devices they required to have features like low power, lesser 

area without increase of latency. With ever growing 

reliance on computers and proliferation of computer 

services, the need for dependable computing systems has 

become very crucial. Fault tolerance is a design attribute of 

a system that enables fault tolerant and dependable 

functioning of a system in spite of failures in the system. 

This examination reported an extensive review on Fault-

Tolerance Design for Integer Parallel Matrix–Vector 

Multiplications. 

 

Keywords- Matrix–Vector Multiplications, FPGA, Fault-

Tolerance Circuit, VLSI, Parallel Design. 

 

1. INTRODUCTION 
Matrix multiplication and Fast Fourier Transform are 

important tools used in the Digital Signal Processing 

applications. Each of them is compute-intensive portion of 

broadband beam forming applications such as those generally 

used in software defined radio and sensor networks. These 

are frequently used kernel operations in signal and image 

processing systems including mobile systems. 

Recently, in signal processing there has been a lot of 

development to increase its performance both at the 

algorithmic level and the hardware implementation level. 

Researchers have been developing efficient algorithms to 

increase the speed and to keep the memory size low. On the 

other hand, developers of the VLSI systems are including 

features in design that improves the system performance for 

applications requiring matrix multiplication and Fast Fourier 

Transform. Research in this field is not only because of the 

popularity, but also because of the reason that, for decades 

the chip size has decreased drastically. This has allowed 

portable systems to integrate more functions and become 

more powerful. These advances have also, unfortunately, led 

to increase in power consumption. This has resulted in a 

situation, where numbers of potential applications are limited 

by the power - not the performance. Therefore, power 

consumption has resulted to be the most significant design 

requirement in portable systems and this has lead to many   

low power design techniques and algorithms. 

Matrix-Vector Multiplication is directly related to a wide 

variety of computational disciplines, including circuit and 

economic modeling, industrial engineering, image 

reconstruction, algorithms for least squares and eigenvalue 

problem. Floating-point Matrix-Vector Multiplication, 

generally denoted as y = Ax, is the key computational kernel 

that dominates the performance of many scientific and 

engineering applications. However, the performance of 

Matrix-Vector Multiplication is highly limited by the 

irregularity of memory accesses as well as high ratio of 

memory I/O operations, and is usually much lower than that 

of dense matrix multiplication. 

Many real life numerical problems in applications such as 

engineering simulations, scientific computing, information 

retrieval, and economics use matrices where there are few 

interactions between elements and hence most of the matrix 

entries are zero. For these common problems, dense matrix 

representations and algorithms are inefficient. There is no 

reason to store the zero entries in memory or to perform 

computations on them. Consequently, it is important to use 

sparse matrix representations for these applications. The 

sparse matrix representations only explicitly represent non-

zero matrix entries and only perform operations on the non-

zero matrix elements. Further, sparse parallel algorithms 

often take advantage of matrix locality to perform much less 

communication on parallel machines than their dense counter 

parts. 

The advantage of FPGAs is that many floating point 

operations can be performed in parallel. The parallelization 

strategy chooses must allow use of many Processing 

Elements (PE). Parallelize over the set of dot products in the 

matrix multiply, assigning a minimum of one dot product to 

each PE. So the maximum usable number of PEs is the 

dimension of the matrix. Further scaling would require 

breaking dot products between processing elements. Parallel 

scaling can also be limited by the large amount of 

communication work required when there are many PEs. 

For many approaches, large communication work between 

processing elements is the main scaling limiter. Perform 

offline data placement to minimize communication by 

exploiting locality in the sparse matrix. The interconnect for 

design is a bidirectional ring which allows inexpensive local 

communication between PEs.  

 

2. MATRIX VECTOR MULTIPLICATION 

AND FAULT TOLERANCE 

A. Sparse Matrix Sparse Vector Multiplication 

Sparse Matrix Sparse Vector Multiplication is simply the 
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multiplication of a sparse matrix by a sparse vector. The 

general format follows typical matrix vector multiplication 

except that it would be a waste of time to multiply zeros by 

any number. Figure illustrates this dilemma. 

 
Fig.2.1 Sparse Matrix Sparse Vector Multiplication 

 To handle this implementation, a storage scheme is used to 

hold the data for the sparse structures.  Due to the storage 

scheming, matrix vector multiplication is no longer a 

straightforward operation. The column address of the current 

row of a matrix being multiplied must correspond with an 

existing row address of the vector. If there is a match, then 

the two corresponding values can be multiplied together.   

The matrix value‟s column address must be compared to the 

vector‟s row address and cannot be directly mapped as 

above. If the matrix address is less than the vector address, 

then the next matrix value‟s address needs to be compared.  

If the matrix value‟s address is greater than the vector 

address‟, then the next vector value‟s address must be 

retrieved. If they both match, then they are obviously 

multiplied together address‟, then the next vector value‟s 

address must be retrieved. If they both match, then they are 

obviously multiplied together.   

B. Fault Methodologies 

There are various fault tolerant approaches for FPGAs that 

have been proposed throughout the years. Approaches reach 

out from basic incorporation of additional segments that are 

not entirely important to working, in the event of failure in 

different segments to completely online versatile executions. 

A fault can be defined as a defect or unsatisfactory condition 

of a system, which may lead to failure, or illogical function 

of the system. Fault tolerance is the methodology of the 

hardware system that in case of occurrence of any logical 

error or hardware faults, the correct logical working of the 

system can still be achieved by having an alternative backup 

procedure to immediately take up its place to maintain the 

precise, error-free functionality of the system. One of the 

distinct advantages of using reconfigurable devices, such as 

FPGAs, is that the current functionality of the device can be 

altered or changed sometime in the future. This 

supplementary benefit allows the designers to completely 

reprogram the FPGA with a new logic. 

The basic principle of design for fault tolerance is to provide 

the system with some extra resources / redundancy 

(hardware, software, run time, additional information etc.) 

beyond what is required to accomplish the given tasks and 

use these extra resources to mask , overcome, the effect of a 

malfunction autonomously , without human intervention. It is 

a fault management technique which negates the effect of 

failures. 

Besides ultra high reliability, the need for fault tolerance is 

driven by other factors such as ultra high availability reduced 

life cycle costs and long life and unattended  operations.  

Fault  tolerant  computers  are  also  called  as  :        resilient 

computers,  „computers  that  can‟t  fail  ‟  ,  „nonstop  

systems‟  ,  „  no  down     time computers‟, „zero defect 

systems‟  and crash resistant computers. 

Design of fault tolerance is a broad discipline, the diverse 

areas of which range from study of failure mechanisms in 

integrated circuits to the design of robust software. It requires 

a good understanding of a large and complex set of 

interrelated subjects. 

 

3. LITERATURE REVIEW 

 
 

Z. Gao, Q. Jing, Y. Li, P. Reviriego and J. A. Maestro [1] 

Parallel matrix processing is a typical operation in many 

systems, and in particular matrix-vector multiplication 

(MVM) is one of the most common operations in the modern 

digital signal processing and digital communication systems. 

This examination work reported a fault-tolerant design for 

integer parallel MVMs. The scheme combines ideas from 

error correction codes with the self-checking capability of 

MVM. Field-programmable gate array evaluation shows that 

the proposed scheme can significantly reduce the overheads 

compared to the protection of each MVM on its own. 
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Therefore, the proposed technique can be used to reduce the 

cost of providing fault tolerance in practical 

implementations. 

I. Sayahi, M. Machhout and R. Tourki [2] In diverse 

domains, the scientific applications requires severe 

computing algebra routines. The matrix multiplication 

presents an indispensable mathematical operation in many 

high performance fields. This work presents a new FPGA 

design and implementation for matrix vector multiplication. 

The design has been implemented with Xilinx System 

Generator. The results of FPGA implementation were 

compared with similar work on VIRTEX 4 platform. It 

demonstrates the efficiency of our work in term of resources 

utilization and speed up. 

S. M. Ali, W. Shaojun, M. Ning and P. Yu [3] Sparse Matrix 

with dense Vector Multiplication (SpMxV) is a key 

computational kernel for most mathematical high 

performance computing problems. SpMxV implementation 

on FPGAs provides better performance but memory 

bandwidth limitations and pipeline stalling are still ongoing 

research concerns. This research proposes an FPGA 

optimized single bit stream column major sparse 

compression format that ensures decreased memory 

bandwidth and storage requirement. The architecture ensures 

low pipeline stalling by effectively performing 3 floating 

point operations per cycle per processing element. The 

proposed architecture is demonstrated with known 

benchmarks on ZYNQ-ZC702 FPGA. Result shows that on 

average our approach achieves compression ratios of 3.0 to 

5.3 with respect to conventional CSR format. And peak 

compression ratio of 20.0 can be achieved for certain 

matrices used in our research. Low stall architecture proves 

40 to 150% depreciation in stall cycles providing better 

overall efficiency. 

Z. Gao, P. Reviriego and J. A. Maestro [4] Parallel matrix 

processing is a typical operation in many systems, and in 

particular matrix-vector multiplication is one of the most 

common operations in modern digital signal processing and 

digital communication systems. This work proposes a fault 

tolerant design for parallel matrix-vector multiplications. The 

scheme combines ideas from Error Correction Codes with 

the self-checking capability of matrix-vector multiplication. 

A. Schöll, C. Braun, M. A. Kochte and H. Wunderlich, [5] 

this examination propose a fault tolerance approach for 

sparse matrix operations that detects and implicitly locates 

errors in the results for efficient local correction. This 

approach reduces the runtime overhead for fault tolerance 

and provides high error coverage. Existing algorithm-based 

fault tolerance approaches for sparse matrix operations detect 

and correct errors, but they often rely on expensive error 

localization steps. General checkpointing schemes can induce 

large recovery cost for high error rates. For sparse matrix-

vector multiplications, experimental results show an average 

reduction in runtime overhead of 43.8%, while the error 

coverage is on average improved by 52.2% compared to 

related work. The practical applicability is demonstrated in a 

case study using the iterative Preconditioned Conjugate 

Gradient solver. When scaling the error rate by four orders of 

magnitude, the average runtime overhead increases only by 

31.3% compared to low error rates. 

C. Yang, Y. Wang and J. D. Owens, [6] this examination 

work implement a promising algorithm for sparse-matrix 

sparse-vector multiplication (SpMSpV) on the GPU. An 

efficient k-way merge lies at the heart of finding a fast 

parallel SpMSpV algorithm. This work examine the 

scalability of three approaches -- no sorting, merge sorting, 

and radix sorting -- in solving this problem. For breadth-first 

search (BFS), achieve a 1.26x speedup over state-of-the-art 

sparse-matrix dense-vector (SpMV) implementations. The 

algorithm seems generalize able for single-source shortest 

path (SSSP) and sparse-matrix sparse-matrix multiplication, 

and other core graph primitives such as maximal independent 

set and bipartite matching. 

P. N. Q. Anh, R. Fan and Y. Wen, [7] Sparse matrix-vector 

multiplication (SpMV) is an important kernel used in solving 

many scientific and engineering problems. The massive 

parallelism of graphics processing units (GPUs) makes them 

well suited for SpMV computations. However, fully utilizing 

the power of GPUs is challenging because SpMV makes a 

large number of scattered memory accesses which saturate 

the GPU's memory bandwidth. Most previous works sought 

to address the bandwidth limitation by using efficient storage 

formats for the matrix. However, show that for most 

matrices, a majority of the bandwidth is consumed by 

accesses to the vector. In this examination, introduce two 

techniques to significantly decrease the I/O for vector 

accesses, by making novel use of the GPU's fast shared 

memory. A key advantage of our vector optimizations is that 

they are complementary to existing matrix I/O optimizations, 

so that it is possible to use both techniques in conjunction. 

Furthermore, combining the optimizations requires only 

minor code changes. The work demonstrates how to combine 

our techniques with the widely used CUSP SpMV algorithm 

and the currently highest performing yaSpMV algorithm to 

significantly improve both algorithms' performance. This 

work experimented with a wide range of matrices, and show 

that the modified version of CUSP on average reduces vector 

I/O by 37% and reduces the total I/O by 31%, while the 

modified version of yaSpMV reduces the vector and total I/O 

by 36% and 31%, resp. proposed work improve CUSP's total 

throughput by 14% on average and up to 77% for certain 

matrices, and improve yaSpMV's throughput by 12% on 

average and 35% for some matrices. 

J. Huang, J. Ren, W. Yin and L. Wang,[8] Sparse Matrix-

Vector Multiplication (SpMxV) algorithms suffer heavy 

performance penalties due to irregular memory accesses. In 

this examination introduce a novel compressed element 

storage (CES) format, in which the additional data structures 

for indexing are abandoned, and each location associated 

with the non-zero element of the matrix is now indicated by 

the name of a variable multiplied by the corresponding 

element of the vector. To ensure fastest access and parallel 

access without data hazards, on-chip registers are used 

exclusively to replace the BRAM or off-chip DRAM/SRAM 

to hold all the SpMxV data. On-chip DSP resources are fully 

utilized so as to ensure a maximum number of multipliers 

concurrently working. 
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4. PROBLEM STATEMENT 
Given many problems in scientific computing result in large 

matrices, it is of interest to determine the extent to which this 

performance can be maintained for such matrices. Although 

in previous examination only demonstrates the scheme for 

the case  that only one MVM fails, it can be extended to the  

case  that  multiple MVMs fail  by  selecting  the  codes  with  

larger  distance. The previous work can be extended in 

following ways. 

• Hardware architectures for banded matrices and 

symmetric matrices that can significantly extend the 

scalability to large order matrices and achieve 

higher degrees of parallelism, 

• Hardware architectures that can trade parallelism 

with FPGA resources to achieve greater scalability. 

 

5. CONCLUSION 
This work reported an extensive survey of literature on an 

efficient fault-tolerance design for integer parallel matrix–

vector multiplications. Various previous works are examined 

to write review on matrix multiplication. The implementation 

of sparse matrix sparse vector multiplication on a 

reconfigurable computing platform provides a unique 

solution to limitations often encountered in software 

programming. Though fault avoidance and fault removal 

approaches such as use of high quality components, better 

and conservative designs and fabrications practices, and test 

and validation processes are effective in reducing the faults, 

they cannot completely eliminate in complex systems. 

Coding for computers must satisfy very restrictive speed and 

reliability constraints. Since encoders and decoders can also 

fail, the fault tolerant implementations are gaining 

importance. 
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