
International Journal For Applied Research in Science and Engineering

Volume 4, Issue 5, December-2021 ISSN (Online): 2456-124X

www.ijarse.org Copyright 2021.All rights reserved. 1

AN EXTENSIVE SURVEY OF LITERATURE ON EFFICIENT FAULT-

TOLERANCE DESIGN FOR INTEGER PARALLEL MATRIX–VECTOR

MULTIPLICATIONS

Kailash Chakradhari
1
, Prof. Balram Gupta

2

1
Mtech Scholar,

2
Guide

SCOPE college of engineering Bhopal

Abstract- Matrix multiplication is widely used as core

operation in various signals processing application like

software defined radio. The FFT processor is widely used

in DSP and communication applications. Recently, both

high data processing and high power efficiency consumes

more power. Due to the nature of non-stop processing at

the sample rate, the pipelined FFT appears to be the

leading architecture for high performance applications.

Since these two functions are widely used in various mobile

devices they required to have features like low power, lesser

area without increase of latency. With ever growing

reliance on computers and proliferation of computer

services, the need for dependable computing systems has

become very crucial. Fault tolerance is a design attribute of

a system that enables fault tolerant and dependable

functioning of a system in spite of failures in the system.

This examination reported an extensive review on Fault-

Tolerance Design for Integer Parallel Matrix–Vector

Multiplications.

Keywords- Matrix–Vector Multiplications, FPGA, Fault-

Tolerance Circuit, VLSI, Parallel Design.

1. INTRODUCTION
Matrix multiplication and Fast Fourier Transform are

important tools used in the Digital Signal Processing

applications. Each of them is compute-intensive portion of

broadband beam forming applications such as those generally

used in software defined radio and sensor networks. These

are frequently used kernel operations in signal and image

processing systems including mobile systems.

Recently, in signal processing there has been a lot of

development to increase its performance both at the

algorithmic level and the hardware implementation level.

Researchers have been developing efficient algorithms to

increase the speed and to keep the memory size low. On the

other hand, developers of the VLSI systems are including

features in design that improves the system performance for

applications requiring matrix multiplication and Fast Fourier

Transform. Research in this field is not only because of the

popularity, but also because of the reason that, for decades

the chip size has decreased drastically. This has allowed

portable systems to integrate more functions and become

more powerful. These advances have also, unfortunately, led

to increase in power consumption. This has resulted in a

situation, where numbers of potential applications are limited

by the power - not the performance. Therefore, power

consumption has resulted to be the most significant design

requirement in portable systems and this has lead to many

low power design techniques and algorithms.

Matrix-Vector Multiplication is directly related to a wide

variety of computational disciplines, including circuit and

economic modeling, industrial engineering, image

reconstruction, algorithms for least squares and eigenvalue

problem. Floating-point Matrix-Vector Multiplication,

generally denoted as y = Ax, is the key computational kernel

that dominates the performance of many scientific and

engineering applications. However, the performance of

Matrix-Vector Multiplication is highly limited by the

irregularity of memory accesses as well as high ratio of

memory I/O operations, and is usually much lower than that

of dense matrix multiplication.

Many real life numerical problems in applications such as

engineering simulations, scientific computing, information

retrieval, and economics use matrices where there are few

interactions between elements and hence most of the matrix

entries are zero. For these common problems, dense matrix

representations and algorithms are inefficient. There is no

reason to store the zero entries in memory or to perform

computations on them. Consequently, it is important to use

sparse matrix representations for these applications. The

sparse matrix representations only explicitly represent non-

zero matrix entries and only perform operations on the non-

zero matrix elements. Further, sparse parallel algorithms

often take advantage of matrix locality to perform much less

communication on parallel machines than their dense counter

parts.

The advantage of FPGAs is that many floating point

operations can be performed in parallel. The parallelization

strategy chooses must allow use of many Processing

Elements (PE). Parallelize over the set of dot products in the

matrix multiply, assigning a minimum of one dot product to

each PE. So the maximum usable number of PEs is the

dimension of the matrix. Further scaling would require

breaking dot products between processing elements. Parallel

scaling can also be limited by the large amount of

communication work required when there are many PEs.

For many approaches, large communication work between

processing elements is the main scaling limiter. Perform

offline data placement to minimize communication by

exploiting locality in the sparse matrix. The interconnect for

design is a bidirectional ring which allows inexpensive local

communication between PEs.

2. MATRIX VECTOR MULTIPLICATION

AND FAULT TOLERANCE

A. Sparse Matrix Sparse Vector Multiplication

Sparse Matrix Sparse Vector Multiplication is simply the

International Journal For Applied Research in Science and Engineering

Volume 4, Issue 5, December-2021 ISSN (Online): 2456-124X

www.ijarse.org Copyright 2021.All rights reserved. 2

multiplication of a sparse matrix by a sparse vector. The

general format follows typical matrix vector multiplication

except that it would be a waste of time to multiply zeros by

any number. Figure illustrates this dilemma.

Fig.2.1 Sparse Matrix Sparse Vector Multiplication

 To handle this implementation, a storage scheme is used to

hold the data for the sparse structures. Due to the storage

scheming, matrix vector multiplication is no longer a

straightforward operation. The column address of the current

row of a matrix being multiplied must correspond with an

existing row address of the vector. If there is a match, then

the two corresponding values can be multiplied together.

The matrix value‟s column address must be compared to the

vector‟s row address and cannot be directly mapped as

above. If the matrix address is less than the vector address,

then the next matrix value‟s address needs to be compared.

If the matrix value‟s address is greater than the vector

address‟, then the next vector value‟s address must be

retrieved. If they both match, then they are obviously

multiplied together address‟, then the next vector value‟s

address must be retrieved. If they both match, then they are

obviously multiplied together.

B. Fault Methodologies

There are various fault tolerant approaches for FPGAs that

have been proposed throughout the years. Approaches reach

out from basic incorporation of additional segments that are

not entirely important to working, in the event of failure in

different segments to completely online versatile executions.

A fault can be defined as a defect or unsatisfactory condition

of a system, which may lead to failure, or illogical function

of the system. Fault tolerance is the methodology of the

hardware system that in case of occurrence of any logical

error or hardware faults, the correct logical working of the

system can still be achieved by having an alternative backup

procedure to immediately take up its place to maintain the

precise, error-free functionality of the system. One of the

distinct advantages of using reconfigurable devices, such as

FPGAs, is that the current functionality of the device can be

altered or changed sometime in the future. This

supplementary benefit allows the designers to completely

reprogram the FPGA with a new logic.

The basic principle of design for fault tolerance is to provide

the system with some extra resources / redundancy

(hardware, software, run time, additional information etc.)

beyond what is required to accomplish the given tasks and

use these extra resources to mask , overcome, the effect of a

malfunction autonomously , without human intervention. It is

a fault management technique which negates the effect of

failures.

Besides ultra high reliability, the need for fault tolerance is

driven by other factors such as ultra high availability reduced

life cycle costs and long life and unattended operations.

Fault tolerant computers are also called as : resilient

computers, „computers that can‟t fail ‟ , „nonstop

systems‟ , „ no down time computers‟, „zero defect

systems‟ and crash resistant computers.

Design of fault tolerance is a broad discipline, the diverse

areas of which range from study of failure mechanisms in

integrated circuits to the design of robust software. It requires

a good understanding of a large and complex set of

interrelated subjects.

3. LITERATURE REVIEW

Z. Gao, Q. Jing, Y. Li, P. Reviriego and J. A. Maestro [1]

Parallel matrix processing is a typical operation in many

systems, and in particular matrix-vector multiplication

(MVM) is one of the most common operations in the modern

digital signal processing and digital communication systems.

This examination work reported a fault-tolerant design for

integer parallel MVMs. The scheme combines ideas from

error correction codes with the self-checking capability of

MVM. Field-programmable gate array evaluation shows that

the proposed scheme can significantly reduce the overheads

compared to the protection of each MVM on its own.

International Journal For Applied Research in Science and Engineering

Volume 4, Issue 5, December-2021 ISSN (Online): 2456-124X

www.ijarse.org Copyright 2021.All rights reserved. 3

Therefore, the proposed technique can be used to reduce the

cost of providing fault tolerance in practical

implementations.

I. Sayahi, M. Machhout and R. Tourki [2] In diverse

domains, the scientific applications requires severe

computing algebra routines. The matrix multiplication

presents an indispensable mathematical operation in many

high performance fields. This work presents a new FPGA

design and implementation for matrix vector multiplication.

The design has been implemented with Xilinx System

Generator. The results of FPGA implementation were

compared with similar work on VIRTEX 4 platform. It

demonstrates the efficiency of our work in term of resources

utilization and speed up.

S. M. Ali, W. Shaojun, M. Ning and P. Yu [3] Sparse Matrix

with dense Vector Multiplication (SpMxV) is a key

computational kernel for most mathematical high

performance computing problems. SpMxV implementation

on FPGAs provides better performance but memory

bandwidth limitations and pipeline stalling are still ongoing

research concerns. This research proposes an FPGA

optimized single bit stream column major sparse

compression format that ensures decreased memory

bandwidth and storage requirement. The architecture ensures

low pipeline stalling by effectively performing 3 floating

point operations per cycle per processing element. The

proposed architecture is demonstrated with known

benchmarks on ZYNQ-ZC702 FPGA. Result shows that on

average our approach achieves compression ratios of 3.0 to

5.3 with respect to conventional CSR format. And peak

compression ratio of 20.0 can be achieved for certain

matrices used in our research. Low stall architecture proves

40 to 150% depreciation in stall cycles providing better

overall efficiency.

Z. Gao, P. Reviriego and J. A. Maestro [4] Parallel matrix

processing is a typical operation in many systems, and in

particular matrix-vector multiplication is one of the most

common operations in modern digital signal processing and

digital communication systems. This work proposes a fault

tolerant design for parallel matrix-vector multiplications. The

scheme combines ideas from Error Correction Codes with

the self-checking capability of matrix-vector multiplication.

A. Schöll, C. Braun, M. A. Kochte and H. Wunderlich, [5]

this examination propose a fault tolerance approach for

sparse matrix operations that detects and implicitly locates

errors in the results for efficient local correction. This

approach reduces the runtime overhead for fault tolerance

and provides high error coverage. Existing algorithm-based

fault tolerance approaches for sparse matrix operations detect

and correct errors, but they often rely on expensive error

localization steps. General checkpointing schemes can induce

large recovery cost for high error rates. For sparse matrix-

vector multiplications, experimental results show an average

reduction in runtime overhead of 43.8%, while the error

coverage is on average improved by 52.2% compared to

related work. The practical applicability is demonstrated in a

case study using the iterative Preconditioned Conjugate

Gradient solver. When scaling the error rate by four orders of

magnitude, the average runtime overhead increases only by

31.3% compared to low error rates.

C. Yang, Y. Wang and J. D. Owens, [6] this examination

work implement a promising algorithm for sparse-matrix

sparse-vector multiplication (SpMSpV) on the GPU. An

efficient k-way merge lies at the heart of finding a fast

parallel SpMSpV algorithm. This work examine the

scalability of three approaches -- no sorting, merge sorting,

and radix sorting -- in solving this problem. For breadth-first

search (BFS), achieve a 1.26x speedup over state-of-the-art

sparse-matrix dense-vector (SpMV) implementations. The

algorithm seems generalize able for single-source shortest

path (SSSP) and sparse-matrix sparse-matrix multiplication,

and other core graph primitives such as maximal independent

set and bipartite matching.

P. N. Q. Anh, R. Fan and Y. Wen, [7] Sparse matrix-vector

multiplication (SpMV) is an important kernel used in solving

many scientific and engineering problems. The massive

parallelism of graphics processing units (GPUs) makes them

well suited for SpMV computations. However, fully utilizing

the power of GPUs is challenging because SpMV makes a

large number of scattered memory accesses which saturate

the GPU's memory bandwidth. Most previous works sought

to address the bandwidth limitation by using efficient storage

formats for the matrix. However, show that for most

matrices, a majority of the bandwidth is consumed by

accesses to the vector. In this examination, introduce two

techniques to significantly decrease the I/O for vector

accesses, by making novel use of the GPU's fast shared

memory. A key advantage of our vector optimizations is that

they are complementary to existing matrix I/O optimizations,

so that it is possible to use both techniques in conjunction.

Furthermore, combining the optimizations requires only

minor code changes. The work demonstrates how to combine

our techniques with the widely used CUSP SpMV algorithm

and the currently highest performing yaSpMV algorithm to

significantly improve both algorithms' performance. This

work experimented with a wide range of matrices, and show

that the modified version of CUSP on average reduces vector

I/O by 37% and reduces the total I/O by 31%, while the

modified version of yaSpMV reduces the vector and total I/O

by 36% and 31%, resp. proposed work improve CUSP's total

throughput by 14% on average and up to 77% for certain

matrices, and improve yaSpMV's throughput by 12% on

average and 35% for some matrices.

J. Huang, J. Ren, W. Yin and L. Wang,[8] Sparse Matrix-

Vector Multiplication (SpMxV) algorithms suffer heavy

performance penalties due to irregular memory accesses. In

this examination introduce a novel compressed element

storage (CES) format, in which the additional data structures

for indexing are abandoned, and each location associated

with the non-zero element of the matrix is now indicated by

the name of a variable multiplied by the corresponding

element of the vector. To ensure fastest access and parallel

access without data hazards, on-chip registers are used

exclusively to replace the BRAM or off-chip DRAM/SRAM

to hold all the SpMxV data. On-chip DSP resources are fully

utilized so as to ensure a maximum number of multipliers

concurrently working.

International Journal For Applied Research in Science and Engineering

Volume 4, Issue 5, December-2021 ISSN (Online): 2456-124X

www.ijarse.org Copyright 2021.All rights reserved. 4

4. PROBLEM STATEMENT
Given many problems in scientific computing result in large

matrices, it is of interest to determine the extent to which this

performance can be maintained for such matrices. Although

in previous examination only demonstrates the scheme for

the case that only one MVM fails, it can be extended to the

case that multiple MVMs fail by selecting the codes with

larger distance. The previous work can be extended in

following ways.

• Hardware architectures for banded matrices and

symmetric matrices that can significantly extend the

scalability to large order matrices and achieve

higher degrees of parallelism,

• Hardware architectures that can trade parallelism

with FPGA resources to achieve greater scalability.

5. CONCLUSION
This work reported an extensive survey of literature on an

efficient fault-tolerance design for integer parallel matrix–

vector multiplications. Various previous works are examined

to write review on matrix multiplication. The implementation

of sparse matrix sparse vector multiplication on a

reconfigurable computing platform provides a unique

solution to limitations often encountered in software

programming. Though fault avoidance and fault removal

approaches such as use of high quality components, better

and conservative designs and fabrications practices, and test

and validation processes are effective in reducing the faults,

they cannot completely eliminate in complex systems.

Coding for computers must satisfy very restrictive speed and

reliability constraints. Since encoders and decoders can also

fail, the fault tolerant implementations are gaining

importance.

REFERENCES
[1] Z. Gao, Q. Jing, Y. Li, P. Reviriego and J. A.

Maestro, "An Efficient Fault-Tolerance Design for

Integer Parallel Matrix–Vector Multiplications," in

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 26, no. 1, pp. 211-215, Jan.

2018.

[2] I. Sayahi, M. Machhout and R. Tourki, "FPGA

implementation of matrix-vector multiplication

using Xilinx System Generator," 2018 International

Conference on Advanced Systems and Electric

Technologies (IC_ASET), Hammamet, 2018, pp.

290-295.

[3] S. M. Ali, W. Shaojun, M. Ning and P. Yu, "A

bandwidth in-sensitive low stall sparse matrix

vector multiplication architecture on reconfigurable

FPGA platform," 2017 13th IEEE International

Conference on Electronic Measurement &

Instruments (ICEMI), Yangzhou, 2017, pp. 171-

176.

[4] Z. Gao, P. Reviriego and J. A. Maestro, "Efficient

fault tolerant parallel matrix-vector multiplications,"

2016 IEEE 22nd International Symposium on On-

Line Testing and Robust System Design (IOLTS),

Sant Feliu de Guixols, 2016, pp. 25-26.

[5] A. Schöll, C. Braun, M. A. Kochte and H.

Wunderlich, "Efficient Algorithm-Based Fault

Tolerance for Sparse Matrix Operations," 2016 46th

Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN),

Toulouse, 2016, pp. 251-262.

[6] C. Yang, Y. Wang and J. D. Owens, "Fast Sparse

Matrix and Sparse Vector Multiplication Algorithm

on the GPU," 2015 IEEE International Parallel and

Distributed Processing Symposium Workshop,

Hyderabad, 2015, pp. 841-847.

[7] P. N. Q. Anh, R. Fan and Y. Wen, "Reducing

Vector I/O for Faster GPU Sparse Matrix-Vector

Multiplication," 2015 IEEE International Parallel

and Distributed Processing Symposium, Hyderabad,

2015, pp. 1043-1052.

[8] J. Huang, J. Ren, W. Yin and L. Wang, "No zero

padded sparse matrix-vector multiplication on

FPGAs," 2014 International Conference on Field-

Programmable Technology (FPT), Shanghai, 2014,

pp. 290-291.

[9] Z. Gao et al., “Fault tolerant parallel filters based

on error correction codes,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 23, no. 2, pp. 384–

387, Feb. 2015.

[10] Z. Gao et al., “Fault tolerant parallel FFTs using

error correction codes and Parseval checks,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol.

24, no. 2, pp. 769–773, Feb. 2016.

[11] Z. Gao, P. Reviriego, and J. A. Maestro, “Efficient

fault tolerant parallel matrix-vector multiplications,”

in Proc. IEEE 22nd Int. Symp. On-Line Test.

Robust Syst. Design (IOLTS), Jul. 2016, pp. 25–

26.

